Munich Graduate Program for Evolution, Ecology and Systematics
print


Breadcrumb Navigation


Content

Seminar Series

Every semester, EES organise a seminar series, which takes place on Mondays at 16:00 at Biozentrum, Großhaderner Str. 2, 82152 Planegg-Martinsried, Lecture Hall B 01.019

Speakers are invited from mainly around Europe across all three areas (Evolution, Ecology and Systematics), leading to a wide-range of presented research topics.

Winter Semester 2022/23

21.11.2022

Cristina Tuni -Reproductive trait evolution: unravelling the effects of pre- and post-copulatory sexual
selection. (ONLINE ONLY)

University of Torino, Italy

Abstract: Sexual selection operates both before and after mating, with evolutionary theory predicting that traits involved in mate acquisition, namely pre-copulatory traits, covary with those involved in fertilization success, namely post-copulatory traits. Based on the nature of these associations, selection acting on traits, such as male ornaments and/or armaments, can potentially constrain or facilitate the evolution of other traits, such as testes and/or sperm phenotype, and vice-versa. Using the field cricket Gryllus bimaculatus as a model system, my research aims at understanding how pre- and post-copulatory sexual selection shape complex reproductive phenotypes. I will
discuss findings from studies uncovering both, phenotypic and genetic correlations among behaviour, morphology, and ejaculate traits, suggesting that traits are integrated at the genetic level. I will further report on a long-
term experimental evolution study designed to disentangle the effects of pre-and post-copulatory selective pressures on a range of reproductive traits. The study of male courtship singing, aggressiveness and weaponry (mandibles), testes and sperm traits, will allow understanding whether and which traits diverge in response to altered pre- or post-mating selective pressures, potentially shedding light on correlated evolution and/or evolutionary trade-offs between reproductive traits.

05.12.2022

R. Brian Langerhans - Predictability and parallelism of multi-trait adaptation and speciation.

North Carolina State University, United States of America

Abstract: Environments shape the traits of organisms and appear to ultimately cause the majority of speciation on Earth. While the deterministic action of selection on organismal phenotypes is widespread, the degree to which evolutionary change might be predicted (from theory) and the magnitude of parallelism (consistent occurrences) during evolution is not yet well understood. Using the post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes, I assess the predictability, parallelism, and magnitude of evolutionary divergence in nearly 100 traits and six reproductive isolating barriers. Natural selection clearly drives a non-trivial amount of
predictable and repeatable evolution, directly influencing the evolution of multiple isolating barriers during speciation. But just how predictable and consistent are these patterns, how generalizable are the results, and what explains all of the “unexplained” phenotypic evolution and reproductive isolation?

19.12.2022

Carolin Haug

LMU Munich, Germany

09.01.2023

Anja Hörger

Paris Lodron University of Salzburg, Austria

23.02.2023

tba

06.02.2023

Aurélien Tellier

Technical University of Munich, Germany

07.02.2023

Krushnamegh Kunte

National Center for Biological Sciences, Bangalore, India

 

Summer Semester 2020

20.01.2020

Björn Benning - Bryozoa in a nutshell: evolution, ecology, systematics

Oberösterreichisches Landmuseum Linz, Austria

27.04.2020

Virginie Courtier-Orgogozo - Evolution of Drosophila Bristles

CNRS, Paris, France

08.06.2020

Douglas Sheil - Forests and Water: Advances and Controversies

Norwegian University of Life Sciences

13.07.2020

Joana Meier

University of Cambridge, UK

Winter Semester 2019/20

18.11.2019

Alistair McGregor - Investigating the Evolution of Developmental Regulation in Spiders and Flies

Oxford Brookes University, UK

Abstract: Research in my lab focuses on questions that are key to understanding animal evolution: How does the genetic regulation of development evolve and what is the genetic and developmental bases for morphological variation within and between species. To address these questions we study the genomics and genetics of the development of the spider Parasteatoda tepidariorum, and gene regulation and morphological evolution among flies of the Drosophila melanogaster species subgroup. In this talk I will present our recent work on the regulation of segmentation in Parasteatoda, and on investigating cis-regulatory logic and morphology evolution among Drosophila species. Research in my lab focuses on questions that are key to understanding animal evolution: How does the genetic regulation of development evolve and what is the genetic and developmental bases for morphological variation within and between species. To address these questions we study the genomics and genetics of the development of the spider Parasteatoda tepidariorum, and gene regulation and morphological evolution among flies of the Drosophila melanogaster species subgroup. In this talk I will present our recent work on the regulation of segmentation in Parasteatoda, and on investigating cis-regulatory logic and morphology evolution among Drosophila species.

25.11.2019

Marie Herbestein - Unlocking the paradox of imperfect mimicry using ant mimicking spiders

Macquarie University, Australia

Abstract: Batesian mimics are deliciously palatable species that gain protection from a predator by resembling a defended or unpalatable model. Theory predicts that mimics that closely resemble their model should have the greatest advantage, while inaccurate mimics should be recognised and attacked by predators. This is all fine and good, but in reality, we find that mimics are highly variable, some are excellent in mimicking their model and others are rubbish at it. There are many different hypotheses that try to explain the persistence of inaccurate mimics, and we have a research project at Macquarie University that tests these ideas using ant mimicking spiders. In this seminar, I will illustrate the range of mimic fidelity in ant mimicking spiders and present the evaluation of some of the common hypotheses. If time and technology permits we will even play an online game.

09.12.2019

Julien Gagneur - Modelling the regulatory code: From basic biology to clinical research

Technical University of Munich, Germany

My lab is interested in understanding how gene expression is encoded in genomes, and how to leverage this knowledge for medical application. To this end, we employ statistical modeling of ‘omics data and work in close collaboration with experimentalists. I will provide an overview of recent studies on RNA metabolism and protein expression control and on deep learning based models of cis-regulatory elements. I will also report on methodologies for using RNA-sequencing as a powerful companion tool to genome sequencing for pinpointing causes of rare genetic disorders.

16.12.2019

Aurelien Tellier -Inference of past demography and life history traits from whole genome genetic and epigenetic data

Technical University of Munich, Germany

Several methods based on the Sequential Markovian coalescence (SMC) have been developed to use full genome sequence data to uncover population demographic history, which is of interest in its own right and is a key requirement to generate a null model for selection tests. While these methods can be applied in principle to all possible species, they have two main limitations: 1) the underlying assumptions are sexual reproduction at each generation and no overlap of generations, and 2) the inference accuracy depends on the ratio of recombination to mutation. However, in many plants, invertebrates, fungi and other taxa, these assumptions are often violated due to different ecological and life history traits, such as self-fertilization, long term dormant structures (seed or egg-banking) or large variance in offspring production. In this presentation I will first describe a novel SMC-based method which we developed to infer 1) the rates of seed/egg-bank and of self-fertilization, and 2) the populations' past demographic history. Using simulated data sets, we demonstrate the accuracy of our method for a wide range of demographic scenarios and for sequence lengths from one to 30 Mb using four sampled genomes. As a test, we apply our method to a Swedish and a German population of Arabidopsis thaliana demonstrating a selfing rate of ca. 0:87 and the absence of any detectable seed-bank. In contrast, we show that the water flea Daphnia pulex exhibits a long lived egg-bank of three to 18 generations. Second, I will provide recommendations for the use of SMC-based methods for non-model organisms, highlighting the importance of the per site and the effective ratios of recombination over mutation. Third, I will show some preliminary results on the effect and estimation of a violation of the Wright-Fisher model assumption, namely the large variance in offspring production which is common to fish, invertebrates and fungal species. Finally, if time permits, I will show some preliminary results on the use of methylation patterns to enhance the power of inference under an SMC model using both genetic and epigenetic markers.

 

 

Previous Years